|
| using | Base = FunctionSpace< std::tuple< typename Spline::template derived_self_type< typename Spline::value_type, Spline::geoDim(), Spline::degree(0)+1, Spline::degree(1)+1, Spline::degree(2)+1, Spline::degree(3)+1 >, typename Spline::template derived_self_type< typename Spline::value_type, Spline::geoDim(), Spline::degree(0)+1, Spline::degree(1)+1, Spline::degree(2)+1, Spline::degree(3)+1 >, typename Spline::template derived_self_type< typename Spline::value_type, Spline::geoDim(), Spline::degree(0)+1, Spline::degree(1)+1, Spline::degree(2)+1, Spline::degree(3)+1 >, typename Spline::template derived_self_type< typename Spline::value_type, Spline::geoDim(), Spline::degree(0)+1, Spline::degree(1)+1, Spline::degree(2)+1, Spline::degree(3)+1 >, typename Spline::template derived_self_type< typename Spline::value_type, Spline::geoDim(), Spline::degree(0), Spline::degree(1), Spline::degree(2), Spline::degree(3)> > > |
| | Base type.
|
| |
template<typename Spline>
class iganet::TH< Spline, 4 >
Taylor-Hood like function space.
This class implements the Taylor-Hood like function space
\[
S^{p_1+1,p_2+1,p_3+1,p_4+1}_{p_1-1,p_2-1,p_3-1,p_4-1} \otimes
S^{p_1+1,p_2+1,p_3+1,p_4+1}_{p_1-1,p_2-1,p_3-1,p_4-1} \otimes
S^{p_1+1,p_2+1,p_3+1,p_4+1}_{p_1-1,p_2-1,p_3-1,p_4-1} \otimes
S^{p_1+1,p_2+1,p_3+1,p_4+1}_{p_1-1,p_2-1,p_3-1,p_4-1} \otimes
S^{p_1,p_2,p_3,p_4}_{p_1-1,p_2-1,p_3-1,p_4-1}
\]
in four spatial dimensions [1].