Instance Normalization as described in the paper.
More...
#include </home/runner/work/iganet/iganet/include/layer.hpp>
|
| InstanceNorm (const torch::Tensor &running_mean, const torch::Tensor &running_var, const torch::Tensor &weight, const torch::Tensor &bias, double eps, double momentum, bool use_input_stats=true) |
|
| InstanceNorm (torch::nn::functional::InstanceNormFuncOptions options={}) |
|
| ~InstanceNorm () override=default |
|
torch::Tensor | apply (const torch::Tensor &input) const override |
| Applies the activation function to the given input.
|
|
torch::nn::functional::InstanceNormFuncOptions & | options () |
| Returns non-constant reference to options.
|
|
const torch::nn::functional::InstanceNormFuncOptions & | options () const |
| Returns constant reference to options.
|
|
virtual void | pretty_print (std::ostream &os=Log(log::info)) const noexcept override |
| Returns a string representation of the activation function.
|
|
torch::serialize::InputArchive & | read (torch::serialize::InputArchive &archive, const std::string &key="instance_norm") override |
| Reads the activation function from a torch::serialize::InputArchive object.
|
|
torch::serialize::OutputArchive & | write (torch::serialize::OutputArchive &archive, const std::string &key="instance_norm") const override |
| Writes the activation function into a torch::serialize::OutputArchive object.
|
|
virtual | ~ActivationFunction ()=default |
|
|
torch::nn::functional::InstanceNormFuncOptions | options_ |
|
|
virtual const std::string & | name () const noexcept |
| Returns the full qualified name of the object.
|
|
at::optional< std::string > | name_ |
| String storing the full qualified name of the object.
|
|
Instance Normalization as described in the paper.
Instance Normalization: The Missing Ingredient for Fast Stylization, https://arxiv.org/abs/1607.08022
◆ InstanceNorm() [1/2]
iganet::InstanceNorm::InstanceNorm |
( |
torch::nn::functional::InstanceNormFuncOptions |
options = {} | ) |
|
|
inlineexplicit |
◆ InstanceNorm() [2/2]
iganet::InstanceNorm::InstanceNorm |
( |
const torch::Tensor & |
running_mean, |
|
|
const torch::Tensor & |
running_var, |
|
|
const torch::Tensor & |
weight, |
|
|
const torch::Tensor & |
bias, |
|
|
double |
eps, |
|
|
double |
momentum, |
|
|
bool |
use_input_stats = true |
|
) |
| |
|
inlineexplicit |
◆ ~InstanceNorm()
iganet::InstanceNorm::~InstanceNorm |
( |
| ) |
|
|
overridedefault |
◆ apply()
torch::Tensor iganet::InstanceNorm::apply |
( |
const torch::Tensor & |
input | ) |
const |
|
inlineoverridevirtual |
◆ options() [1/2]
torch::nn::functional::InstanceNormFuncOptions & iganet::InstanceNorm::options |
( |
| ) |
|
|
inline |
Returns non-constant reference to options.
◆ options() [2/2]
const torch::nn::functional::InstanceNormFuncOptions & iganet::InstanceNorm::options |
( |
| ) |
const |
|
inline |
Returns constant reference to options.
◆ pretty_print()
virtual void iganet::InstanceNorm::pretty_print |
( |
std::ostream & |
os = Log(log::info) | ) |
const |
|
inlineoverridevirtualnoexcept |
◆ read()
torch::serialize::InputArchive & iganet::InstanceNorm::read |
( |
torch::serialize::InputArchive & |
archive, |
|
|
const std::string & |
key = "instance_norm" |
|
) |
| |
|
inlineoverridevirtual |
◆ write()
torch::serialize::OutputArchive & iganet::InstanceNorm::write |
( |
torch::serialize::OutputArchive & |
archive, |
|
|
const std::string & |
key = "instance_norm" |
|
) |
| const |
|
inlineoverridevirtual |
◆ options_
torch::nn::functional::InstanceNormFuncOptions iganet::InstanceNorm::options_ |
|
private |
The documentation for this class was generated from the following file: