![]() |
IgANet
IgANets - Isogeometric Analysis Networks
|
#include </home/runner/work/iganet/iganet/include/iganet.hpp>
Public Member Functions | |
IgANetGeneratorImpl ()=default | |
Default constructor. | |
IgANetGeneratorImpl (const std::vector< int64_t > &layers, const std::vector< std::vector< std::any > > &activations, Options< real_t > options=Options< real_t >{}) | |
Constructor. | |
torch::Tensor | forward (torch::Tensor x) |
Forward evaluation. | |
virtual void | pretty_print (std::ostream &os=Log(log::info)) const noexcept override |
torch::serialize::InputArchive & | read (torch::serialize::InputArchive &archive, const std::string &key="iganet") |
Reads the IgANet from a torch::serialize::InputArchive object. | |
torch::serialize::OutputArchive & | write (torch::serialize::OutputArchive &archive, const std::string &key="iganet") const |
Writes the IgANet into a torch::serialize::OutputArchive object. | |
Private Attributes | |
std::vector< std::unique_ptr< iganet::ActivationFunction > > | activations_ |
Vector of activation functions. | |
std::vector< torch::nn::Linear > | layers_ |
Vector of linear layers. | |
https://pytorch.org/tutorials/advanced/cpp_frontend.html#module-ownership
we implement a generator implementation class following
https://pytorch.org/tutorials/advanced/cpp_frontend.html#the-generator-module
|
default |
Default constructor.
|
inlineexplicit |
Constructor.
|
inline |
Forward evaluation.
|
inlineoverridevirtualnoexcept |
|
inline |
Reads the IgANet from a torch::serialize::InputArchive object.
|
inline |
Writes the IgANet into a torch::serialize::OutputArchive object.
|
private |
Vector of activation functions.
|
private |
Vector of linear layers.